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Augmented moment method for stochastic ensembles with delayed couplings.
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Dynamics of FitzHugh-Nagum@FN) neuron ensembles with time-delayed couplings subject to white
noises, has been studied by using both direct simulations and a semianalytical augmented moment method
(AMM) which has been proposed in a preceding pdpeHasegawa, Phys. Rev. B), 021911(2004)]. For
N-unit FN neuron ensembles, AMM transforms origin&l-dimensionaktochastiaelay differential equations
(SDDES to infinite-dimensionabdeterministicDEs for means and correlation functions of local and global
variables. Infinite-order recursive DEs are terminated at the finite leviel the levelm AMM (AMM m),
yielding 8m+1)-dimensional deterministic DEs. When a single spike is applied, the oscillation may be in-
duced if parameters of coupling strength, delay, noise intensity and/or ensemble size are appropriate. Effects of
these parameters on the emergence of the oscillation and on the synchronization in FN neuron ensembles have
been studied. The synchronization shows fhetuation-inducedenhancement at the transition between
nonoscillating and oscillating states. Results calculated by AMM5 are in fairly good agreement with those
obtained by direct simulations.

DOI: 10.1103/PhysRevE.70.021912 PACS nuner87.10:+e, 84.35+i, 05.45—a, 07.05.Mh

I. INTRODUCTION There are two difficulties in studying combined effects of

There have been m tudies on effects of noises in d noise and delay in brains. One is that the system is usually
. rI av ef‘h dar:y S UC' S | eb ES.O r:jls S IN OYascribed bynonlinear SDDESs, which are generally more
nhamical systems with delays. Complex behavior due to NOISgtie it than linear SDDES. Dynamics of individual neurons

and delay is found in many systems such as biological SySpc|ydes a variety of voltage dependent ionic channels which
tems, s!gnal transmissions, electrical circuits, and Iase'rs. SY$an be described by nonlinear DEs of Hodgkin-Huxley-type
tems with both noises and delay are commonly described byodels, or of reduced neuron models such as IF, FN, and HR
stochastic delay differential equatiotSDDES. In recent  models. The other difficulty is that a small cluster of cortex
years, linear and nonlinear SDDEs of Langevin equation argonsists of thousands of similar neurons. For a study of dy-
beginning to gain much attentiqd—7]. The parameter range namics of noisy neuron ensembles with time-delayed cou-
for the stationary solutions of the Langevin equation haslings, we have to solve high-dimensional nonlinear SDDESs,
been examined with the use of the step by step mefithd which have been studied by direct simulatigBsss [19,20
the moment mothod2], and the Fokker-Planck equation and by analytical methods like FPR1]. Simulations for
(FPB method[3,4]. large-scale neuron ensembles have been made mostly by us-
When we turn our attention to living brains, various kindsing IF, FN, HR and phase models. Since the time to simulate
of noises are reported to be ubiquitous. A study on noiséetworks by conventional methods growsNgswith N, the
effects has been one of major recent topics in neuronal Sy§jze of the ensemble, it is rather difficult to simulate r_ealistic
tems. It has been shown that the response of neurons may Bguron clusters. Although FPE is a powerful method in deal-
improved by background noises. The typical example is thé?d With the stochastic DE, a simple FPE application to
stochastic resonance in which weak noises enhance the tran2PDE fails because of its non-Markovian propef3ys)].
mission of signals with the subthreshold level. The transmis- " & Preceding papgR2] (which is referred to hereafter as

: o ; , the present author has developed an augmented moment
sion delay is inherent because the speed of spikes propagét) b ; ;
ing through axons is finite. Conduction velocity ranges frommethOd(AMM) for SDDE, employing a semianalytical dy-

. o - .~ namical mean-field approximatiqibMA) theory[23,24. In
20 to 60 m/s, leading to non-negligible transmission tlmeﬁ AMM is applied topgn ensenglle d(—gscribe)(;[ by tﬁe delay
from milliseconds to hundreds milliseconds. Although an im-’

¢ off f delav has b ed “Langevin model, transforming the origin&l-dimensional
portance of effects of delay has been not so recognize DEs to infinite-dimensional DEs which are terminated at

that of noises, there is an increasing interest in the complefqiie |evel m in the levelm AMM (AMM m). Model calcu-
behavior of time delays, whose effects have been investiniions in | with changing the levah have shown that cal-
gated by using mtegrate_z-and-ﬂr@F) [8-12, FitzHugh- culated results converge at a fairly smial Actually results
Nag“”?" (FN) [13-13, Hindmarsh-RosgHR) [16], and obtained by AMMG6 are in good agreement with those by
Hodgkm—Huxley (HH) models[10,11,17.,1$ Exposed _be- DSs for linear and nonlinear Langevin ensembles. It has
hawors QUe to time delays are the multistability and blfurca-been demonstrated in | that AMM may be a useful tool in
tion leading to chaos. discussing dynamics and synchronization of ensembles de-
scribed by SDDEs.
It is the purpose of the present paper to apply AMM to FN
*Email address: hasegawa@u-gakugei.ac.jp neuron ensembles with time-delayed couplings. In Sec. I,
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we apply our AMM theory to nonlinear SDDEs bfunit FN Pra(t,t’) = (X, (1) X\ (1)) (6)
neuron ensembles, in order to get the infinite-dimensional

deterministic DEs for the correlation functions of local and 1

global variables. Infinite-dimensional recursive DEs are ter- :@E 2AXGO X)), ()
minated at the finite leveh in AMM m. In Sec. Il we report i

model calculations, showing that results of our AMM are in\yhere sx ()=X,(t)- (). Conventional variances and co-

good agreement with those of DSs. Section IV is devoted tQ,,iances are gKiven b; Eqe6)(7) with t=t’, for which the

conclusions and discussions. symmetry relations: yio(t,0=y,4(t,t) and poo(t,0)
=p,1(t,t), are held. It is noted thag, ,(t,t)(x,A=1,2) ex-

Il. FN NEURON ENSEMBLE presses the spatial average of fluctuations in local variables
A. Adopted model and method 81]: ;Ki while p,. ,(t,t) denotes fluctuations in global variables
. . . . K*
Dynamics of a neuron ensemble consisting\efinit FN After our previous studief22—24, we have assumed that
neurons(N=2), is described by thel:-dimensional nonlin-  the noise intensity is weak and that the distribution of state
ear SDDEs given by variables takes the Gaussian form concentrated near the

dx (0 1 means of(uq, u,). The second assumption is justified from
A = Fxg ()] - cxg (1) + ( ) > W G(xg;(t = 7)) numerical calculations for single F[29,30 and HH neurons

dt N-=1/jz) [31,33. We will obtain infinite-order equations of motions
FEMD)+19) 1) for means, variance, and covariances defined by &gs.7).
§i ' ( They will be terminated at the leveh in AMM m. Readers
who are not interested in mathematical details, may skip to

dxy(t
P -t re (=18, @ NG

where F[x()]=kx(®[x(t)~h][1-x(], k=05, h=0.1, b B. Equations of motions

=0.015,c=1.0, d=0.003, ande=0 [23,25, and x;; and xy; After some manipulations, we get DES fay(t), y,,(t,t)

denote the fastvoltage and slow(recovery variables, re- andp, ,(t,t)(x,»=1,2) given by (for details see Appendix
spectively. The third term in Eql) stands for interactions A)

with the uniform couplings ofv;; =w and delay times of;; st

=7, and the sigmond functiots(x) given by G(x)=1/(1 L — £ (1) + o) yy 1t 1) = Caan(t) + W Lot = 7) +1€©(0)
+exg—(x-60)/«]), 8 and « denoting the threshold and the dt 0 20N He o

width, respectively{26]. The all-to-all couplings have been (8)
widely employed in theoretical studies. The assumed con-
stant delay may be justified in certain neural netwdikg. dss(t)
The fourth term of Eq(1), &(t), denotes the Gaussian white d—2 =buy(t) — duy(t) + e, (9
noise given by(&(t))=0 and<§i(t)§j(t’)>:ﬁ2(‘5ij o(t—t") where t
B denotes the magnitudes of independent noises and the
bracket(-) the stochastic averag@8]. The last term in Eq. dy1at,t) = 2[a(t) y1 1(t,t) = Cyq o(t,1)]
(1), 19(t), denotes an external input whose explicit form will dt ' '
be shown latefEq. (31)]. + 2wy (t = P&y 4Lt — 1) + B2, (10)
We apply our AMM developed in | to FN neuron en- '
semble given by Egqql) and (2), defining global variables dy, A1)
for the ensemble given by yzd—zt = 2[by 4(t,1) — dys AL.1)], (11)
1
X=X %0, k=12, 3 Ay, AL
' =Pt +[a —dlyy ot - ey ltit)
and their averages by
+wuy(t - 7)o 4(tt—7), (12
pilt) = (X, (1)) (4)
We define the correlation functions between local variables, dp1a(t,h = 2[a(t)py 1(t,t) — cpy H(t,1)]
given by dt ’ ’
,32
L1 , + 2wy (t - tt—1+—, 1
Fatt) = T2 (O (), KA=12, () Dotz (09
|

where 8 (1) =x,;(t) — u(t). Similarly we define the correla- dpa o(t,1) _ bor 441 — don ALt 14
tion function between global variables, given by dt [bpy ALY = dpz AL, (14
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92l - by 0,) + ) - oy ot = it 1)
+Wuy(t = 7)po o(t,t = 7), (15)
with
a(t) = f(t) + 3f3(t) v 1(t,1), (16)
o) = Golt) + Gy (1), an
131) = Gy(0) + 35(0) 7, 41,0, a9

1
Lo tit) = (m)[NPK,V(U’) =Y ltt)], (19

where f,(t)=(1/€1)FO(uy(t)) and ge(t)=(1/€1)GO(u,(1)).
Equations (8)—(15) include the higher-order terms of
Y lt,t=7) andp, (t,t-7), whose equations of motions are
given by(m=1)
dyy 4(t,t—m7)

at =[a(t) +a(t—m7)]y,1(t,t—m7)
= [y t,t=m7) + yp 4(t,t = m7)]
+ W[Ul(t - T)gl,l(t - ’T,t - mT)

+uy(t—(m+ D)7 4(tt-(m+1)7)]

+ B2A(m7), (20)
DALttt + - )]
- 2d’yZ’2(t,t_ mT), (21)

dyy o(t,t—m7)
MT = by 4(t,t— ma) + [a(t) - ]y, H(t,t — ma)
- C’)’Z,Z(Lt - mT) + Wul(t - T)

X t=7t—m7), (22)

W = by, 4(t,t - m7) + [a(t - m7) — d]
X ’y2’1(t,t - mT) - C’)/2’2(t,t - m’T)
+wu(t—(m+ 1)1 (Lt — (m+ 1) 7),

(23)

W =[a(t) + a(t - m7)]py 4(t,t —m7)
= [pyAt,t=m7) + py 4(t,t—m7)]
+WUy(t— 7)py 4t — 7t —m7)
+Uy(t—(m+1)7)py 4(t,t - (M+ 1)7)]

x

+

ﬁ)A(mT), (24
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dp, ot,t —m7)

at =Dbpy o(t,t —m7) + py 4(t,t—m7) ]

- dezvz(t,t - mT), (25)
dp1,2(tlt - mT)

dt =bpy 4(t,t —m7) +[a(t) — dlpy o(t,t —m7)

= Cppt,t—m7) + wuy(t - 7)

Xpyt—71t-m7), (26)

dpy (t,t—m7)

at =bpy 4(t,t —m7) +[a(t - m7) - d]

po,l(tit - mT) - Cp2,2(t1t - mT)
+ W (t—(M+1)7)py (Lt = (Mm+1)7),
(27)

whereA(x)=1 for x=0 and O otherwise.

C. Summary of our method

The original two-dimensional SDDE given by Eq4)
and(2) are transformed to infinite-dimensional deterministic
DDEs given by Eqs(8)—(15) and (20)—«27), which are due
to non-Markovian property of SDDE. It is, however, impos-
sible to simultaneously solve these infinite-order recursive
equations. We will adopt the levetr AMM (AMMmM) in
which the recursive DEs are terminated at the finite lemel
as

7K,V(t7t - (m + 1) T) = yK,V(t’t - mT), (28)
pK,V(t’t_ (m+ 1)T) :pK,V(tlt_ mT)! (29)
gi(t—(m+1)7) =gy(t—-m7), (30)

leading to 8m+ 1)-dimensional DEs. In the following Sec.
I, we will examine AMMm, performing calculations with
changingm, in order to show that AMM5 may vyield results
in fairy good agreement with those of O6ig. 5b)]. In the
limit of 7=0, EQs.(20)-(27) reduce to Eqs(10)—15), then
Egs.(8)«15) agree with Eqs(20)—<27) in Ref. [23] for FN
neurons ensembles without delgdp$].

Model calculations will be reported in the following Sec.
IIl. DSs have been performed foN2DEs given by Eqs(1)
and(2) by using the fourth-order Runge-Kutta method with a
time step of 0.01. Initial values of variablestat (—7,0] are
x(t)=y;(t)=0 fori=1 toN. DS results are the average of 100
trials otherwise noticed. AMM calculations have been per-
formed for Egs.(8)—«30) by using also the fourth-order
Runge-Kutta method with a time step of 0.01. Initial values
are uy()=u,()=0 at te[-7,0], and vy, ,(t,t'")=p,,(t,t")
=0te[-7,0] ort’ e[-7,0](t=t'). All calculated quantities
are dimensionless.
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T 5= S(), (35)
60 with

v 40

Npy 1(t,0)/ vy 4(1,1) — 1)

ao:( i (36)

20

which is 0 and 1 for completely asynchronous and synchro-
nous states, respectively.
We have calculated time courses @fi(t), 7y (t,1),

FIG. 1. Thew—r phase diagram showing the oscillati@sg ~ P1i(t,t), and St), whose results are depicted in Figs.
and nonoscillatingNOSQ states for3=0 andN=10. For sets of 2(@-2(), solid and dashed curves denoting results of AMM
parameters ofv and = marked by circles, time courses @ft), and DS, respectively.

Yt,1), p(t,1), and S(t) are calculated, whose results are shown in  For 7=0, an output spike of(t) fires after an applied
Figs. 2 and 3. Along the horizontal dashed lime=60), thew de-  input which is plotted at the bottom of Fig(&@ [and also of

pendence ofr, and o is calculated in Figs. 4 and 5. Figs. 4e) and Zi)]. It is noted that state variables are ran-
domized when an input spike is appliedtat100 because
[Il. MODEL CALCULATIONS independent noises have been added sir€e Figures 2b)

and 2c) show v, ; andp, ; for 7=0, respectively. The syn-
chronization ratioS(t) for =0 shown in Fig. 2d) has an
In this study, we pay our attention to the response of theappreciable magnitude: its maximum values calculated in
FN neuron ensembles to a single spike input®ft) given ~ AMM are 0.038 and 0.077 at=107 and 123, respectively.
by [23] Figure 2e) shows that when a delay ef=20 is introduced,
o)\ _ _ B an input signal leads to a spike output with an additional,
190 =AO(t- 1) Oty + T~ 1), BD  gmal peak inu; att=133. Figures &) and 2g) show that
where ®(x)=1 for x>0 and O otherwiseA stands for the although a peak of; ; for 7=20 becomes larger than that for
magnitude,t;, the input time andT,, the spike width. We 7=0, a peak ofp, ; is decreased by an introduced delay.
have adopted the same parameterée0.10,t,=100, and Maximum values ofS(t) calculated by AMM are 0.154 and
T,=10 as in Ref[23]. Parameter values af, 7, 8, andN 0.130 att=126 and 140, respectively, far=20. We note
will be explained shortly. from Fig. Qi) that for a largerr=60, an input spike triggers
When an input spike given by Eq@31) is applied, the an autonomous oscillation with a period of about 65. Peaks
oscillation may be triggered when model parameters are aph v, 1, p1,1, andS are progressively increased with increas-
propriate. Thew—r phase diagram showing the oscillating ing t as shown in Figs. @—-2(1): peaks ofy; ;, p; 3, andS
(OSQO and nonoscillatingNOSQC) states is depicted in Fig. saturate at=1200 with the values of 0.00253, 0.00014, and
1, which is calculated fo3=0 andN=10. In the case oB 0.098, respectively, in AMM calculations. We note in Figs.
=0.01, for example, the OSC region is slightly shrunk com-2(a)-2(l) that results ofu, obtained by AMM and DS are
pared to that fo3=0, as will be shortly discussd&igs. §a)  indistinguishable, and that AMM results 4 ;, p; ;, andS
and %b)]. Thew—7 phase is separated by two boundaries inare in fairly good agreement with those of DSs.
positive- and negativer regions. Circles in Fig. 1 express Figure 1 shows that although the obtained NOSC-OSC
pairs ofw and 7 adopted for calculations to be shown in Figs. phase is nearly symmetric with respect to #e0 axis, it is
2 and 3. Along the horizontal, dashed line in Fig. 1, the not in the strict sense. Actually the property of the oscillation
value is continuously changed in calculations to be shown iffor inhibitory couplings(w<0) is different from that for

A. Effects of coupling (w) and delay ()

Figs. 4a) and 4b). excitatory couplinggw>0). Figures 8a) and 3b) show au-
In order to monitor the emergence of the oscillation, wetonomous oscillations fow=0.1 andw=-0.1, respectively,
calculate the quantity: with 7=60, 8=0.01, and\N=10. The period of the oscillation
L t T is given byT=r1+7 wherer denotes the intrinsic delay for
g,=0(t) = f dt Ot), (32) firings. For inhibitory feedback with negative FN neurons
2~y fire with the rebound process, which requires a largdor

firing than for excitatory feedback with positive Then the
period of T=86 for autonomous oscillation with the negative
1 B B w becomes larger than that =65 with the positivew.
oW = Ng [0 = xi(1)7] (33 By changing thev value along the horizontal, dashed line
in Fig. 1, we have calculated thvedependence af, andos,
2 2 whose results are plotted in Figgastand 4b), respectively,
O™ = pO7 71,40), (34) for 8=0.0001 and 0.01. The oscillation emerges for
which becomes finite in the oscillation state but vanishes ir=0.058 orw=-0.063 with3=0.0001, while with8=0.01 it
the nonoscillating state, the overline denoting the temporabccurs for w=0.060 or w=-0.070. The transition from
average betweeni(=2000 andt,(=4000. NOSC to OSC states is of the first order becauseis
The synchrony within ensembles is measured 2,23 abruptly increased at the critical couplingwfw,, whereo

with
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FIG. 2. (Color onling Time courses oju;(t), v 1(t), p1 1(t), andS(t) calculated by AMM theorysolid curves and DS(dashed curvegs
with A=0.10,8=0.01,w=0.1, andN=10: (a) w1, (0) ¥1,1, (C) p1,1, and(d) Sfor 7=0, (e) w1, () ¥1.1, (9) p1,2, and(h) Sfor 7=20, and(i)
#1 (4) v1,1 (K) pp1, and(€) Sfor 7=60. Chain curves at bottoms @), (e), and(i) express input spikes.

has a narrow peak. In contrast, the relevant NOSC-OSC trarcritical w,, value for the NOSC-OSC transition is increased:
sition in the nonlinear Langevin model is of the second ordemw,=0.0579(0.0579 for 8=0.001 andw,=0.0600(0.060%
[22]. _ . . _ for 8=0.01 in DS(AMM). Figure §a) shows theg depen-
We have investigated, in more detail, thelependence of dence ofs, and o, for =60, w=0.06 andN=10. o, is
0, and o near the transition region of 0.85w<0.07,  rapidly decreased @8~ B, whereoy has a broad pealg. is
which is sandwiched by vertical, dashed lines in Fig®) 4 apout 0.01 in DS while it is about 0.0075 in AMM. Figure
and 4b), results for3=0.0001 and3=0.01 being plotted in g shows that the similag dependence of, and o is
Figs. @) and 3b), respectively. Figure @) shows that the  hiained also for a larger=0.062, for which8.~ 0.015 in

critical w value for the NOSC-OSC transition isv, : : DAt
- = , DS andB;~0.014 in AMM. A suppression of the oscillation
=0.0579 for 5=0.0001 both in DS and AMMS. When we by noises is realized in the Langevin mo¢22] and in some

adopt AMM1, we get the result showing the NOSC-OSC : :
tranzition atw~0.6g although we Cannotgget solutions for calculations for systems with heterogenef@s], although

0.0586< w< 0.060. With the use of AMM2, we get the tran- the n0|§e-|nduced oscillation is reported in R¢fl,35,36.
sition atw~ 0.058, though solutions are not obtainable forln _parfucular, Zorzgno_and_ Vazqug21l] (zV) showed the
0.0580<w<0.0582. We have noted that AMKh converges n(_)|se7|nduced oscnlatpn in FN neuron ensembqeboc)

at the levelm=3, above which calculated results are almost™ith time delays by using FPE method. The difference be-
identical. Figure ) shows that the critical value af, for ~ \WEeN ZV's results and ours may be due to the difference in
=0.01 is 0.0600 in DS and 0.0607 in AMMS5. For=1, 2, the ad_optpd FN m(_)dgl and/or ensemble size. In order to get
and 3, the NOSC-OSC transition occurs &t 0.0644, SOMe insight on this issue, we have performed AMM calcu-
0.0609, and 0.0807, respectively, for m=3 approaches lations for our FN model V\_llth Iarger ensemble S|z_esl\bf
that for m=5 (in what follows results of AMMS5 will be :lQO r?md 1000.’ and obtgmed again a suppression of the
reported. It is interesting to note in Figs.(& and %b) that _oscnlatlon by noise¢37). It is not clear for us how Zv tO.Ok.
the synchronyos showsfluctuation-inducecnhancement at Into account the non-Markovian property of SDDE within
the NOSC-OSC transition. This is due to an increase in th&1€lr FPE method3,5).

ratio of py 1(t,t)/ 4 4(t,1) in Eq. (36) although bothp, 4(t,t)

and vy, 4(t,t) are increased at the NOSC-OSC transition.
Similar phenomenon has been reported in the nonlinear
Langevin mode[22] and in heterogeneous systems in which ~ The N dependence of, and o for £=0.01,w=0.06 and
the oscillation emerges when the degree of the heterogeneifi= 60 is shown in Fig. 7 where open circlesjuaresexpress

C. Effects of size(N)

exceeds the critical valuig3,34. o,(og) in DS, and where thinbold) solid curves denote
_ oo(og) in AMM. It is shown that with increasing the size of
B. Effects of noise(f) ensembleg, is gradually increased &t~ N, whereo has a

Comparing Fig. Bo) with Fig. 5a), we note that when the broad peak, the critical dimension beihg~ 10 in DS and
noise intensity is increased for®=0.0001 to3=0.01, the N.~100 in AMM. Results of our AMM calculations are
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(a) w=0.1 =60
3l .
2 JAMMMJWJMMJMMJMMM
= [ @w=o1 ]
[¢
-1 1
1 OtOO 2000

FIG. 3. Time courses ofi;(t) showing the oscillation fo(a)
w=0.1 and(b) w=-0.1 with 7=60, 8=0.01, and\N=10 calculated
by AMM, the result of(a) being shifted upwards by 2.

qualitatively similar to those of DS although calculateg
values are different between the two methods.

IV. CONCLUSIONS AND DISCUSSIONS

In Sec. I, we have obtained the infinite-dimensional or-

dinary differential equations. It is, however, possible to get

expressions given by partial differential equatigROES if
we define the correlation functions:

Carlt? = 2 (%, 050,(t-2),  (37)

DA (t,2) = (X, (1) X\ (t - 2)), (38)

introducing a new variable [see Eqs(5) and(6)]. For ex-
ample, PDEs folCy 4(t,2) are given by

dCq4(1,0)
Jt

=2[aC,; 4(t,0) —cCy o(t,0)]

+ zwul(t - 7-)El,l(ti 7-) + le (39)

® ik ]

0.8 H B

0.6 i .

L i E ]

0.4-\/1'_[#0.00013 =60

/ i N 1

o T & —p=0.01 : ]

1 1 E S 1 ]

b2 01 0 0.1 0.2
w

FIG. 4. Thew dependence ofa) o, and (b) o5 for 3=0.0001
(solid curve$ and f=0.01 (dashed curvegswith 7=60 andN=10.
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1.5 T
(a) $=0.0001 06,
m=1 °
¢ IF ms5 ]
3
g i m=2
— 3
0. %) o s,
00" g 0%y
1
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1.5 T
=0.01
®) B 100,
S 1 d ]
& m=3,5¢ S mea| Sm=1
= % /
0. B0 4% 004
i S
&
.06 0.07
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FIG. 5. Thew dependence od, and o, for (a) =0.0001 and
(b) 8=0.01 with 7=60 andN=10. Thin and bold solid curves de-
note results of 18, and o, respectively, in AMM, whereas squares
and circles express those ofd{and o, respectively, in DS. AMM
results with different leveim(=1,2,3,and 5 are shown. Dotted
lines are only for a guide of the eysee text

(‘9 . a>cl (t2)
at dz '
=aCy (t,2) —cCy y(t, 2+ wuy(t - DE 1(t— 7,2— 7)
for z>0, (40)

where E; 4(t,2)=[NDy 4(t,2)—Cy 4(t,2)]/[N-1]. It is noted

[ (a) w=0.60

O ; Y \‘;|
\ o ' ]
0.5 l‘:’ﬂ~uﬂ,n-ﬂ\u_un-ﬂ-u’ Ly
&
\ h
a o
L o0
0.01 0.02

FIG. 6. Thep dependence aof, and o for (a) w=0.60 and(b)
w=0.62 with 7=60 andN=10. Thin and bold solid curves denote
results of 1@, and o, respectively, in AMM whereas squares and

The region sandwiched by dashed, vertical lines is enlarged in Figircles express those of &) and o, respectively, in DS. Dotted

5(a) and §b) for =0.0001 and 0.01, respectively.

lines are only for a guide of the eye.
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L. ' ' i random, and time delays are nonuniform with a variety of
dendrite radius and length. It is interesting to include these
& properties by extending our approach, which is in progress
1 . .
& and will be reported in a future papg39].
=t
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FIG. 7. TheN dependence aof, and o for 8=0.01,7=60, and
w=0.06. Thin and bold solid curves denote results af,Land o, APPENDIX A: DERIVATION OF EQS. (8)—(15)

respectively, in AMM, whereas squares and circles express those of . i
100, and o, respectively, in DS. Dotted lines are only for a guide We express Eqs(l) and (2) in a Taylor expansion of
of the eye. OXi(=d%y;) and dy;(=Xy) up to the third-order terms to get

that Egs.(39) and (40) correspond to Eqs(10) and (20), %
t

; . : = 1 () (1) + FL X (1)? = 1 1(t, )] + F3(t) ¥ ()3
respectively. Then we have to solve PDEs includmgt),

C,.\(t,2), andD,,(t,2) with a proper boundary condition in — coyi()+ &(t) + 51i(C)(t -7, (A1)

the (t,z) space. A similar PDE approach has been adopted in

Ref.[6] for an analysis of the stationary solution of the linear dayi(t)

Langevin equation with delays. In an earlier stage of this —1= = boxi(t) — ddy;(t), (A2)

study, we pursued the PDE approach. We realized, however, dt

from the point of computer programming that the use of theyjith

ordinary DEs given in AMM is more tractable than that of

PDEs. a0 =w| LU S o+ LU S [ag2- 4,
Our calculations have shown that FN neuron ensembles N-1,7 ! N-1,Z ! L

with delays exhibit the multistability when model parameters

such asw, 7, B, andN are varied. The multistability is the + 93_(t) 2 b)(-(t)3> (A3)

common property of the system with time delay. Actually the N-1;% ! '

nonlinear Langevin ensembles discussed in | also show the

multistability: the w—r phase diagram of FN ensembles Wheref(t)=(1/€1)F(uy(t) and ge(t)=(1/€!1)G(u(1)).

shown in Fig. 1 is similar to that of the Langevin ensemblesAverages of Eqs(Al) and(A2) with Egs.(3) and(4) yield

shown in Fig. 6 of I. In either caséluctuation-inducecsyn- ~ DEs for means ofdu,/dt and du,/dt [Eq. (8)]. DEs for

chronization is realized near the transition between OSC an#ariances and covariances may be obtained by using the

NOSC states. These results imply that the oscillating, highlygguations of motions obx and dy;. For example, DE for

synchronous state may be realized in ensembles for small€y12(t,t)/dt is given by

couplings with a proper delay than with no delays. This is

consistent with the recent result of REB8], where the im- dyl—Z(tt) = 12 <(d&(—'(t)> Syi(t) + a}(i(t)<déy—i(t))>,

portance of delays is stressed for the long-range synchroni-  dt N7 dt dt

zation with low coupling strength. (A4)
In summary, we have discussed dynamics of FN neuron

ensembles with delays by using a semi-analytical methovhich leads to Eq(12). DEs for other variances and covari-

developed in I. Our method has a limitation of weak noisesances are similarly obtained.

but it is free from the magnitude of delay times. This is

complementary to the small-delay approximatj8h whose APPENDIX B: DERIVATION OF EQS. (20)—(27)

application to FN neuron ensembles with delays is discussed

in Appendix C. For FN ensembles to show the oscillation, N the process of calculations of Eq8)—(15), we get new

we have to adopt an appreciable magnitude of ddlay correlation functions given by

=20), for which SDA method cannot be employed. In this 1

study we have discussed only the case of a single spike in- Si(t,ty) = = (Xt &(1r)), (B1)

put. Our method may be, however, applicable to arbitrary N

inputs such as periodic spike trains and Poisson spikes, as

was made for HH neuron ensemblggithout delay3 [24]. 1

Although results calculated by our method are in fairly good St = NE (yi(t)&i(t2)), (B2)

agreement with those obtained by DC, the quantitative ana- '

lytical theory is still lacking. In this study, we have assumedwhere 6x;=d%y;, dY;= Xy, t1=t andt,=t—-mr, or t;=t-mr

regular couplinggw;;=w) and uniform time delay$z;=1). andt,=t. We will evaluate them by using DEs fai;(t) and

In real systems, however, couplings are neither regular nody;(t), which are linearized from Eq$A1)—~A3):

021912-7
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doxi(t)

at =a(t) oxi(t) — coyi(t)

(N 1)5 Gt = D)X (t= 1)+ &(1),

(B3)

asyi(t)
dt
where a(t)=f,(t)+3f5(t) y; 4(t,t). Neglecting thet depen-

dence ina(t), we get formal solutions of Eq$B3) and(B4)
given by

=box(t) — doyi(t), (B4)

A+

d t
(1) = (—)f ds exgt™9A

[ E gl(s—r)&,-(s—r)%i(S)}

i(#0)

( B+ d)f ds expgt™98

l E gl(s—r)éxj(s—r)+§i(3)1,

J(#i)

(B5)

( b f ! ds exgt-
oyt = AB sex

(5
|

> gi(s— 1) dXi(s— r)+§.(S)]

Jj(#i)

t
f ds expt™>®

b

A-
x[(
N -
(86)

where A and B are roots of the equation given - (a
—d)z—ad+bc=0. By using the method of steps in R§6],
we obtain the step by step functions, from which we get

‘éw
H

) > gi(s-DX(s— 1+ a(S)] :

i(#0)

2
S(tt-mr) =Sy(t-mnt) = (%)A(mr), (B7)
S,(t,t —mr) =S,(t—mr,t) =0, (B8)

whereA(x)=1 for x=0 and 0 otherwise. By using Eq®87)
and(B8), we get Eqs(20)—«27). The assumption of a neglect
of thet dependence ia(t) may be justified, to some extent,

from results calculated by our method which are in fairly

good agreement with those by DS as reported in Sec. Ill.

APPENDIX C: THE SMALL-DELAY APPROXIMATION

When the delayr is very small, we may adopt the small-
delay approximatioi{SDA) proposed in Ref[3]. With this

PHYSICAL REVIEW E70, 021912(2004)

B-001 '
Fw=01 =1
N=10

4

[ =2
4
= AMM

SDA =5

2 o

I =10

a B

0 T00 200 300

FIG. 8. The time course ofs4(t) calculated in AMM (solid
curveg and in a small-delay approximatiqgwDA) (chain curvey
with 8=0.01,w=0.1, andN=10, results forr=5,2, and 1lbeing
successively shifted upwards by(®e Appendix ©

approximation, we first transform the SDDEs to stochastic
non-delayed DEs, and then to deterministic DEs with the use
of DMA [23]. For a smallr, we may expand;(t—7) in Eq.

(1) as

dxqi(t)

T, (C1

Xgi(t = 7) = xy;(t) -

with which Eq. (1) becomes stochastic nondelayed DEs
given by

dxyi(t) ( dxy(H) (t)

> G'(x 1J(t>>

dt N - 1>J(¢

=F(xy) = C%2 + ( ) > Glxgj(D(+ &(1) +1
N-1 i(#1)
(C2

When we apply DMA to R-dimensional stochastic DEs
given by Egs(2) and(C2), we get equations of motions for
means, variances and covariances, given by

d
ﬁfj—lt(t) =[1 —wrug][fo(t) + f(t) y1 1(t,) = Cua(t) +wgo(t)
+10(1)], -
d
’L;—Zt(t) = b/.Ll(t) - d,uz(t) + e, (C4)
dy1atY

= 2[a(t) y14(t,1) = Cyp ot 1) + Wiy (D) ¢y o(t,0)] + B2

wu(t) )

- 2W7'ul(t)|:a(t)§1 (L) — ey At 1) + ( N-1

X(Npl,l(t!t) - gl,]_(t,t)):| s (C5)
d”a—zt(t't) = 2[byy o(t,1) - dyz oL, 1)], (C6)
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(jyla—zt(t’t) = by 4(t,1) + [a(t) — d]yy ot,t) = Cyo oL, 1)
+ WU (1) &1 ot 1)~ wruy (1) [ a(t) gy At,0)
ctadt0+ (20 o 00 - 1t |
7
9ulbd o —wml(tﬂ[a(t)pl,l(t,t) ~ CpuAt)
:82
+wuy(t)pg (L, 1) + ﬁ} , (CY

PHYSICAL REVIEW E 70, 021912(2004

dp, (1)

a 2 bpy ot 1) —dpo oAt 1)],

(C9

dpl,Z(trt)

dt =bpy 1(t,1) +[a(t) — d]py ot 1) — Cpp AL, 1)

+wuy(t)pg o(t,t)— wrug(t)[a(t) py ot,1)
= Cpoot,t) + wuy (1) py AL, )], (C10

where a(t) and ¢, (t,t) are given by Eqs(16) and (19),
respectively.

A numerical comparison between AMM and SDA is made
in Fig. 8, where solid and chain curves denote results of
AMM and SDA, respectively. For=0 both methods lead to
the identical result. For small delays ef£1 and 2, results of
SDA are in fairly good agreement with those of AMM. As
the delay is increased to>5, however, the discrepancy be-
tween the two methods becomes significant.
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