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Dynamics of FitzHugh-Nagumo(FN) neuron ensembles with time-delayed couplings subject to white
noises, has been studied by using both direct simulations and a semianalytical augmented moment method
(AMM ) which has been proposed in a preceding paper[H. Hasegawa, Phys. Rev. E70, 021911(2004)]. For
N-unit FN neuron ensembles, AMM transforms original 2N-dimensionalstochasticdelay differential equations
(SDDEs) to infinite-dimensionaldeterministicDEs for means and correlation functions of local and global
variables. Infinite-order recursive DEs are terminated at the finite levelm in the level-m AMM sAMM md,
yielding 8sm+1d-dimensional deterministic DEs. When a single spike is applied, the oscillation may be in-
duced if parameters of coupling strength, delay, noise intensity and/or ensemble size are appropriate. Effects of
these parameters on the emergence of the oscillation and on the synchronization in FN neuron ensembles have
been studied. The synchronization shows thefluctuation-inducedenhancement at the transition between
nonoscillating and oscillating states. Results calculated by AMM5 are in fairly good agreement with those
obtained by direct simulations.
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I. INTRODUCTION

There have been many studies on effects of noises in dy-
namical systems with delays. Complex behavior due to noise
and delay is found in many systems such as biological sys-
tems, signal transmissions, electrical circuits, and lasers. Sys-
tems with both noises and delay are commonly described by
stochastic delay differential equations(SDDEs). In recent
years, linear and nonlinear SDDEs of Langevin equation are
beginning to gain much attention[1–7]. The parameter range
for the stationary solutions of the Langevin equation has
been examined with the use of the step by step method[1],
the moment mothod[2], and the Fokker-Planck equation
(FPE) method[3,4].

When we turn our attention to living brains, various kinds
of noises are reported to be ubiquitous. A study on noise
effects has been one of major recent topics in neuronal sys-
tems. It has been shown that the response of neurons may be
improved by background noises. The typical example is the
stochastic resonance in which weak noises enhance the trans-
mission of signals with the subthreshold level. The transmis-
sion delay is inherent because the speed of spikes propagat-
ing through axons is finite. Conduction velocity ranges from
20 to 60 m/s, leading to non-negligible transmission times
from milliseconds to hundreds milliseconds. Although an im-
portance of effects of delay has been not so recognized as
that of noises, there is an increasing interest in the complex
behavior of time delays, whose effects have been investi-
gated by using integrate-and-fire(IF) [8–12], FitzHugh-
Nagumo (FN) [13–15], Hindmarsh-Rose(HR) [16], and
Hodgkin-Huxley (HH) models [10,11,17,18]. Exposed be-
haviors due to time delays are the multistability and bifurca-
tion leading to chaos.

There are two difficulties in studying combined effects of
noise and delay in brains. One is that the system is usually
described bynonlinear SDDEs, which are generally more
difficult than linear SDDEs. Dynamics of individual neurons
includes a variety of voltage dependent ionic channels which
can be described by nonlinear DEs of Hodgkin-Huxley-type
models, or of reduced neuron models such as IF, FN, and HR
models. The other difficulty is that a small cluster of cortex
consists of thousands of similar neurons. For a study of dy-
namics of noisy neuron ensembles with time-delayed cou-
plings, we have to solve high-dimensional nonlinear SDDEs,
which have been studied by direct simulations(DSs) [19,20]
and by analytical methods like FPE[21]. Simulations for
large-scale neuron ensembles have been made mostly by us-
ing IF, FN, HR and phase models. Since the time to simulate
networks by conventional methods grows asN2 with N, the
size of the ensemble, it is rather difficult to simulate realistic
neuron clusters. Although FPE is a powerful method in deal-
ing with the stochastic DE, a simple FPE application to
SDDE fails because of its non-Markovian property[3,5].

In a preceding paper[22] (which is referred to hereafter as
I ), the present author has developed an augmented moment
method(AMM ) for SDDE, employing a semianalytical dy-
namical mean-field approximation(DMA ) theory[23,24]. In
I, AMM is applied to an ensemble described by the delay
Langevin model, transforming the originalN-dimensional
SDDEs to infinite-dimensional DEs which are terminated at
finite level m in the level-m AMM sAMM md. Model calcu-
lations in I with changing the levelm have shown that cal-
culated results converge at a fairly smallm. Actually results
obtained by AMM6 are in good agreement with those by
DSs for linear and nonlinear Langevin ensembles. It has
been demonstrated in I that AMM may be a useful tool in
discussing dynamics and synchronization of ensembles de-
scribed by SDDEs.

It is the purpose of the present paper to apply AMM to FN
neuron ensembles with time-delayed couplings. In Sec. II,*Email address: hasegawa@u-gakugei.ac.jp
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we apply our AMM theory to nonlinear SDDEs ofN-unit FN
neuron ensembles, in order to get the infinite-dimensional
deterministic DEs for the correlation functions of local and
global variables. Infinite-dimensional recursive DEs are ter-
minated at the finite levelm in AMM m. In Sec. III we report
model calculations, showing that results of our AMM are in
good agreement with those of DSs. Section IV is devoted to
conclusions and discussions.

II. FN NEURON ENSEMBLE

A. Adopted model and method

Dynamics of a neuron ensemble consisting ofN-unit FN
neuronssNù2d, is described by the 2N-dimensional nonlin-
ear SDDEs given by

dx1istd
dt

= Ffx1istdg − cx2istd + S 1

N − 1
D o

jsÞid
wijG„x1jst − ti jd…

+ jistd + I sedstd, s1d

dx2istd
dt

= bx1istd − dx2istd + e si = 1 −Nd, s2d

where Ffxstdg=kxstdfxstd−hgf1−xstdg, k=0.5, h=0.1, b
=0.015,c=1.0, d=0.003, ande=0 [23,25], and x1i and x2i
denote the fast(voltage) and slow(recovery) variables, re-
spectively. The third term in Eq.(1) stands for interactions
with the uniform couplings ofwij =w and delay times ofti j
=t, and the sigmond functionGsxd given by Gsxd=1/(1
+expf−sx−ud /ag), u and a denoting the threshold and the
width, respectively[26]. The all-to-all couplings have been
widely employed in theoretical studies. The assumed con-
stant delay may be justified in certain neural networks[27].
The fourth term of Eq.(1), jistd, denotes the Gaussian white
noise given bykjistdl=0 andkjistdj jst8dl=b2di jdst− t8d where
b denotes the magnitudes of independent noises and the
bracketk·l the stochastic average[28]. The last term in Eq.
(1), I sedstd, denotes an external input whose explicit form will
be shown later[Eq. (31)].

We apply our AMM developed in I to FN neuron en-
semble given by Eqs.(1) and (2), defining global variables
for the ensemble given by

Xkstd =
1

N
o

i

xkistd, k = 1,2, s3d

and their averages by

mkstd = kXkstdl. s4d

We define the correlation functions between local variables,
given by

gk,lst,t8d =
1

N
o

i

kdxkistddxlist8dl, k,l = 1,2, s5d

wheredxkistd=xkistd−mkstd. Similarly we define the correla-
tion function between global variables, given by

rk,lst,t8d = kdXkstddXlst8dl s6d

=
1

N2o
i

o
j

kdxk jstddxlist8dl, s7d

wheredXkstd=Xkstd−mkstd. Conventional variances and co-
variances are given by Eqs.(5)–(7) with t= t8, for which the
symmetry relations: g1,2st ,td=g2,1st ,td and r1,2st ,td
=r2,1st ,td, are held. It is noted thatgk,nst ,tdsk ,l=1,2d ex-
presses the spatial average of fluctuations in local variables
of xki while rk,nst ,td denotes fluctuations in global variables
of Xk.

After our previous studies[22–24], we have assumed that
the noise intensityb is weak and that the distribution of state
variables takes the Gaussian form concentrated near the
means ofsm1,m2d. The second assumption is justified from
numerical calculations for single FN[29,30] and HH neurons
[31,32]. We will obtain infinite-order equations of motions
for means, variance, and covariances defined by Eqs.(5)–(7).
They will be terminated at the levelm in AMM m. Readers
who are not interested in mathematical details, may skip to
Sec. II C.

B. Equations of motions

After some manipulations, we get DEs formkstd, gk,nst ,td
and rk,nst ,tdsk ,n=1,2d given by (for details see Appendix
A)

dm1std
dt

= f0std + f2stdg1,1st,td − cm2std + w u0st − td + I sedstd,

s8d

dm2std
dt

= bm1std − dm2std + e, s9d

dg1,1st,td
dt

= 2fastdg1,1st,td − cg1,2st,tdg

+ 2wu1st − tdz1,1st,t − td + b2, s10d

dg2,2st,td
dt

= 2fbg1,2st,td − dg2,2st,tdg, s11d

dg1,2st,td
dt

= bg1,1st,td + fastd − dgg1,2st,td − cg2,2st,td

+ wu1st − tdz2,1st,t − td, s12d

dr1,1st,td
dt

= 2fastdr1,1st,td − cr1,2st,tdg

+ 2wu1st − tdr1,1st,t − td +
b2

N
, s13d

dr2,2st,td
dt

= 2fbr1,2st,td − dr2,2st,tdg, s14d
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dr1,2st,td
dt

= br1,1st,td + fastd − dgr1,2st,td − cr2,2st,td

+ wu1st − tdr2,1st,t − td, s15d

with

astd = f1std + 3f3stdg1,1st,td, s16d

u0std = g0std + g2stdg1,1st,td, s17d

u1std = g1std + 3g3stdg1,1st,td, s18d

zk,nst,t8d = S 1

N − 1
DfNrk,nst,t8d − gk,nst,t8dg, s19d

where f,std=s1/, ! dFs,d(m1std) and g,std=s1/, ! dGs,dsm1stdd.
Equations (8)–(15) include the higher-order terms of
gk,nst ,t−td andrk,nst ,t−td, whose equations of motions are
given by smù1d

dg1,1st,t − mtd
dt

= fastd + ast − mtdgg1,1st,t − mtd

− cfg1,2st,t − mtd + g2,1st,t − mtdg

+ wfu1st − tdz1,1st − t,t − mtd

+ u1„t − sm+ 1dt…z1,1„t,t − sm+ 1dt…g

+ b2Dsmtd, s20d

dg2,2st,t − mtd
dt

= bfg1,2st,t − mtd + g2,1st,t − mtdg

− 2dg2,2st,t − mtd, s21d

dg1,2st,t − mtd
dt

= bg1,1st,t − mtd + fastd − dgg1,2st,t − mtd

− cg2,2st,t − mtd + wu1st − td

3z1,2st − t,t − mtd, s22d

dg2,1st,t − mtd
dt

= bg1,1st,t − mtd + fast − mtd − dg

3g2,1st,t − mtd − cg2,2st,t − mtd

+ wu1„t − sm+ 1dt…z2,1„t,t − sm+ 1dt…,
s23d

dr1,1st,t − mtd
dt

= fastd + ast − mtdgr1,1st,t − mtd

− cfr1,2st,t − mtd + r2,1st,t − mtdg

+ wfu1st − tdr1,1st − t,t − mtd

+ u1„t − sm+ 1dt…r1,1„t,t − sm+ 1dt…g

+ Sb2

N
DDsmtd, s24d

dr2,2st,t − mtd
dt

= bfr1,2st,t − mtd + r2,1st,t − mtdg

− 2dr2,2st,t − mtd, s25d

dr1,2st,t − mtd
dt

= br1,1st,t − mtd + fastd − dgr1,2st,t − mtd

− cr2,2st,t − mtd + wu1st − td

3r1,2st − t,t − mtd, s26d

dr2,1st,t − mtd
dt

= br1,1st,t − mtd + fast − mtd − dg

3r2,1st,t − mtd − cr2,2st,t − mtd

+ wu1„t − sm+ 1dt…r2,1„t,t − sm+ 1dt…,
s27d

whereDsxd=1 for x=0 and 0 otherwise.

C. Summary of our method

The original two-dimensional SDDE given by Eqs.(1)
and(2) are transformed to infinite-dimensional deterministic
DDEs given by Eqs.(8)–(15) and (20)–(27), which are due
to non-Markovian property of SDDE. It is, however, impos-
sible to simultaneously solve these infinite-order recursive
equations. We will adopt the level-m AMM sAMM md in
which the recursive DEs are terminated at the finite levelm,
as

gk,n„t,t − sm+ 1dt… = gk,nst,t − mtd, s28d

rk,n„t,t − sm+ 1dt… = rk,nst,t − mtd, s29d

g1„t − sm+ 1dt… = g1st − mtd, s30d

leading to 8sm+1d-dimensional DEs. In the following Sec.
III, we will examine AMMm, performing calculations with
changingm, in order to show that AMM5 may yield results
in fairy good agreement with those of DS[Fig. 5(b)]. In the
limit of t=0, Eqs.(20)-(27) reduce to Eqs.(10)–(15), then
Eqs.(8)–(15) agree with Eqs.(20)–(27) in Ref. [23] for FN
neurons ensembles without delays[26].

Model calculations will be reported in the following Sec.
III. DSs have been performed for 2N DEs given by Eqs.(1)
and(2) by using the fourth-order Runge-Kutta method with a
time step of 0.01. Initial values of variables attP s−t ,0g are
xistd=yistd=0 for i =1 toN. DS results are the average of 100
trials otherwise noticed. AMM calculations have been per-
formed for Eqs.(8)–(30) by using also the fourth-order
Runge-Kutta method with a time step of 0.01. Initial values
are m1std=m2std=0 at tP f−t ,0g, and gk,nst ,t8d=rk,nst ,t8d
=0 tP f−t ,0g or t8P f−t ,0gstù t8d. All calculated quantities
are dimensionless.

AUGMENTED MOMENT METHOD FOR… . II. … PHYSICAL REVIEW E 70, 021912(2004)

021912-3



III. MODEL CALCULATIONS

A. Effects of coupling „w… and delay „t…

In this study, we pay our attention to the response of the
FN neuron ensembles to a single spike input ofI sedstd given
by [23]

I sedstd = A Qst − tindQstin + Tw − td, s31d

whereQsxd=1 for x.0 and 0 otherwise,A stands for the
magnitude,tin the input time andTw the spike width. We
have adopted the same parameters ofA=0.10, tin=100, and
Tw=10 as in Ref.[23]. Parameter values ofw, t, b, andN
will be explained shortly.

When an input spike given by Eq.(31) is applied, the
oscillation may be triggered when model parameters are ap-
propriate. Thew–t phase diagram showing the oscillating
(OSC) and nonoscillating(NOSC) states is depicted in Fig.
1, which is calculated forb=0 andN=10. In the case ofb
=0.01, for example, the OSC region is slightly shrunk com-
pared to that forb=0, as will be shortly discussed[Figs. 5(a)
and 5(b)]. Thew–t phase is separated by two boundaries in
positive- and negative-w regions. Circles in Fig. 1 express
pairs ofw andt adopted for calculations to be shown in Figs.
2 and 3. Along the horizontal, dashed line in Fig. 1, thew
value is continuously changed in calculations to be shown in
Figs. 4(a) and 4(b).

In order to monitor the emergence of the oscillation, we
calculate the quantity:

so = Ostd =
1

t2 − t1
E

t1

t2

dt Ostd, s32d

with

Ostd =
1

N
o

i

fkxistd2l − kxistdl2g s33d

=mstd2 − mstd2 + g1,1std, s34d

which becomes finite in the oscillation state but vanishes in
the nonoscillating state, the overline denoting the temporal
average betweent1s=2000d and t2s=4000d.

The synchrony within ensembles is measured by[22,23]

ss = Sstd, s35d

with

Sstd = SNr1,1st,td/g1,1st,td − 1

N − 1
D , s36d

which is 0 and 1 for completely asynchronous and synchro-
nous states, respectively.

We have calculated time courses ofm1std, g1,1st ,td,
r1,1st ,td, and Sstd, whose results are depicted in Figs.
2(a)–2(l), solid and dashed curves denoting results of AMM
and DS, respectively.

For t=0, an output spike ofm1std fires after an applied
input which is plotted at the bottom of Fig. 2(a) [and also of
Figs. 2(e) and 2(i)]. It is noted that state variables are ran-
domized when an input spike is applied att=100 because
independent noises have been added sincet=0. Figures 2(b)
and 2(c) show g1,1 and r1,1 for t=0, respectively. The syn-
chronization ratioSstd for t=0 shown in Fig. 2(d) has an
appreciable magnitude: its maximum values calculated in
AMM are 0.038 and 0.077 att=107 and 123, respectively.
Figure 2(e) shows that when a delay oft=20 is introduced,
an input signal leads to a spike output with an additional,
small peak inm1 at t=133. Figures 2(f) and 2(g) show that
although a peak ofg1,1 for t=20 becomes larger than that for
t=0, a peak ofr1,1 is decreased by an introduced delay.
Maximum values ofSstd calculated by AMM are 0.154 and
0.130 at t=126 and 140, respectively, fort=20. We note
from Fig. 2(i) that for a largert=60, an input spike triggers
an autonomous oscillation with a period of about 65. Peaks
in g1,1, r1,1, andS are progressively increased with increas-
ing t as shown in Figs. 2(j)–2(l): peaks ofg1,1, r1,1, andS
saturate att*1200 with the values of 0.00253, 0.00014, and
0.098, respectively, in AMM calculations. We note in Figs.
2(a)–2(l) that results ofm1 obtained by AMM and DS are
indistinguishable, and that AMM results ofg1,1, r1,1, andS
are in fairly good agreement with those of DSs.

Figure 1 shows that although the obtained NOSC-OSC
phase is nearly symmetric with respect to thew=0 axis, it is
not in the strict sense. Actually the property of the oscillation
for inhibitory couplingssw,0d is different from that for
excitatory couplingssw.0d. Figures 3(a) and 3(b) show au-
tonomous oscillations forw=0.1 andw=−0.1, respectively,
with t=60,b=0.01, andN=10. The period of the oscillation
T is given byT=t+ti whereti denotes the intrinsic delay for
firings. For inhibitory feedback with negativew, FN neurons
fire with the rebound process, which requires a largerti for
firing than for excitatory feedback with positivew. Then the
period ofT=86 for autonomous oscillation with the negative
w becomes larger than that ofT=65 with the positivew.

By changing thew value along the horizontal, dashed line
in Fig. 1, we have calculated thew dependence ofso andss,
whose results are plotted in Figs. 4(a) and 4(b), respectively,
for b=0.0001 and 0.01. The oscillation emerges forw
*0.058 orw&−0.063 withb=0.0001, while withb=0.01 it
occurs for w*0.060 or w&−0.070. The transition from
NOSC to OSC states is of the first order becauseso is
abruptly increased at the critical coupling ofw=wc, wheress

FIG. 1. Thew–t phase diagram showing the oscillating(OSC)
and nonoscillating(NOSC) states forb=0 andN=10. For sets of
parameters ofw and t marked by circles, time courses ofmstd,
gst ,td, rst ,td, and Sstd are calculated, whose results are shown in
Figs. 2 and 3. Along the horizontal dashed line(t=60), the w de-
pendence ofso andss is calculated in Figs. 4 and 5.
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has a narrow peak. In contrast, the relevant NOSC-OSC tran-
sition in the nonlinear Langevin model is of the second order
[22].

We have investigated, in more detail, thew dependence of
so and ss near the transition region of 0.05øwø0.07,
which is sandwiched by vertical, dashed lines in Figs. 4(a)
and 4(b), results forb=0.0001 andb=0.01 being plotted in
Figs. 5(a) and 5(b), respectively. Figure 5(a) shows that the
critical w value for the NOSC-OSC transition iswc
.0.0579 forb=0.0001 both in DS and AMM5. When we
adopt AMM1, we get the result showing the NOSC-OSC
transition atw,0.6, although we cannot get solutions for
0.0586,w,0.060. With the use of AMM2, we get the tran-
sition at w,0.058, though solutions are not obtainable for
0.0580,w,0.0582. We have noted that AMMm converges
at the levelm=3, above which calculated results are almost
identical. Figure 5(b) shows that the critical value ofwc for
b=0.01 is 0.0600 in DS and 0.0607 in AMM5. Form=1, 2,
and 3, the NOSC-OSC transition occurs atw= 0.0644,
0.0609, and 0.0807, respectively:wc for m=3 approaches
that for m=5 (in what follows results of AMM5 will be
reported). It is interesting to note in Figs. 5(a) and 5(b) that
the synchronyss showsfluctuation-inducedenhancement at
the NOSC-OSC transition. This is due to an increase in the
ratio of r1,1st ,td /g1,1st ,td in Eq. (36) although bothr1,1st ,td
and g1,1st ,td are increased at the NOSC-OSC transition.
Similar phenomenon has been reported in the nonlinear
Langevin model[22] and in heterogeneous systems in which
the oscillation emerges when the degree of the heterogeneity
exceeds the critical value[33,34].

B. Effects of noise„b…

Comparing Fig. 5(b) with Fig. 5(a), we note that when the
noise intensity is increased formb=0.0001 tob=0.01, the

critical wc value for the NOSC-OSC transition is increased:
wc=0.0579s0.0579d for b=0.001 andwc=0.0600s0.0607d
for b=0.01 in DS(AMM ). Figure 6(a) shows theb depen-
dence ofso and ss for t=60, w=0.06 andN=10. so is
rapidly decreased atb,bc wheress has a broad peak:bc is
about 0.01 in DS while it is about 0.0075 in AMM. Figure
6(b) shows that the similarb dependence ofso and ss is
obtained also for a largerw=0.062, for whichbc,0.015 in
DS andbc,0.014 in AMM. A suppression of the oscillation
by noises is realized in the Langevin model[22] and in some
calculations for systems with heterogeneity[34], although
the noise-induced oscillation is reported in Refs.[21,35,36].
In particular, Zorzano and Vázquez[21] (ZV) showed the
noise-induced oscillation in FN neuron ensemblessN=`d
with time delays by using FPE method. The difference be-
tween ZV’s results and ours may be due to the difference in
the adopted FN model and/or ensemble size. In order to get
some insight on this issue, we have performed AMM calcu-
lations for our FN model with larger ensemble sizes ofN
=100 and 1000, and obtained again a suppression of the
oscillation by noises[37]. It is not clear for us how ZV took
into account the non-Markovian property of SDDE within
their FPE method[3,5].

C. Effects of size„N…

TheN dependence ofso andss for b=0.01,w=0.06 and
t=60 is shown in Fig. 7 where open circles(squares) express
sosssd in DS, and where thin(bold) solid curves denote
sosssd in AMM. It is shown that with increasing the size of
ensemble,so is gradually increased atN,Nc wheress has a
broad peak, the critical dimension beingNc,10 in DS and
Nc,100 in AMM. Results of our AMM calculations are

FIG. 2. (Color online) Time courses ofm1std, g1,1std, r1,1std, andSstd calculated by AMM theory(solid curves) and DS(dashed curves)
with A=0.10,b=0.01,w=0.1, andN=10: (a) m1, (b) g1,1, (c) r1,1, and(d) S for t=0, (e) m1, (f) g1,1, (g) r1,1, and(h) S for t=20, and(i)
m1, (j) g1,1, (k) r1,1, and(,) S for t=60. Chain curves at bottoms of(a), (e), and(i) express input spikes.
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qualitatively similar to those of DS although calculatedNc
values are different between the two methods.

IV. CONCLUSIONS AND DISCUSSIONS

In Sec. II, we have obtained the infinite-dimensional or-
dinary differential equations. It is, however, possible to get
expressions given by partial differential equations(PDEs) if
we define the correlation functions:

Ck,lst,zd =
1

N
o

i

kdxkistddxlist − zdl, s37d

Dk,lst,zd = kdXkstddXlst − zdl, s38d

introducing a new variablez [see Eqs.(5) and (6)]. For ex-
ample, PDEs forC1,1st ,zd are given by

] C1,1st,0d
] t

= 2faC1,1st,0d − cC1,2st,0dg

+ 2wu1st − tdE1,1st,td + b2, s39d

S ]

] t
+

]

] z
DC1,1st,zd

= aC1,1st,zd − cC1,2st,zd+ wu1st − tdE1,1st − t,z− td

for z. 0, s40d

where E1,1st ,zd=fND1,1st ,zd−C1,1st ,zdg / fN−1g. It is noted

FIG. 3. Time courses ofm1std showing the oscillation for(a)
w=0.1 and(b) w=−0.1 with t=60, b=0.01, andN=10 calculated
by AMM, the result of(a) being shifted upwards by 2.

FIG. 4. Thew dependence of(a) so and (b) ss for b=0.0001
(solid curves) and b=0.01 (dashed curves) with t=60 andN=10.
The region sandwiched by dashed, vertical lines is enlarged in Figs.
5(a) and 5(b) for b=0.0001 and 0.01, respectively.

FIG. 5. Thew dependence ofso andss for (a) b=0.0001 and
(b) b=0.01 with t=60 andN=10. Thin and bold solid curves de-
note results of 10so andss, respectively, in AMM, whereas squares
and circles express those of 10so andss, respectively, in DS. AMM
results with different levelms=1,2,3,and 5d are shown. Dotted
lines are only for a guide of the eye(see text).

FIG. 6. Theb dependence ofso andss for (a) w=0.60 and(b)
w=0.62 with t=60 andN=10. Thin and bold solid curves denote
results of 10so andss, respectively, in AMM whereas squares and
circles express those of 10so and ss, respectively, in DS. Dotted
lines are only for a guide of the eye.
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that Eqs.(39) and (40) correspond to Eqs.(10) and (20),
respectively. Then we have to solve PDEs includingmkstd,
Ck,lst ,zd, andDk,lst ,zd with a proper boundary condition in
the st ,zd space. A similar PDE approach has been adopted in
Ref. [6] for an analysis of the stationary solution of the linear
Langevin equation with delays. In an earlier stage of this
study, we pursued the PDE approach. We realized, however,
from the point of computer programming that the use of the
ordinary DEs given in AMM is more tractable than that of
PDEs.

Our calculations have shown that FN neuron ensembles
with delays exhibit the multistability when model parameters
such asw, t, b, andN are varied. The multistability is the
common property of the system with time delay. Actually the
nonlinear Langevin ensembles discussed in I also show the
multistability: the w–t phase diagram of FN ensembles
shown in Fig. 1 is similar to that of the Langevin ensembles
shown in Fig. 6 of I. In either case,fluctuation-inducedsyn-
chronization is realized near the transition between OSC and
NOSC states. These results imply that the oscillating, highly
synchronous state may be realized in ensembles for smaller
couplings with a proper delay than with no delays. This is
consistent with the recent result of Ref.[38], where the im-
portance of delays is stressed for the long-range synchroni-
zation with low coupling strength.

In summary, we have discussed dynamics of FN neuron
ensembles with delays by using a semi-analytical method
developed in I. Our method has a limitation of weak noises
but it is free from the magnitude of delay times. This is
complementary to the small-delay approximation[3], whose
application to FN neuron ensembles with delays is discussed
in Appendix C. For FN ensembles to show the oscillation,
we have to adopt an appreciable magnitude of delayst
*20d, for which SDA method cannot be employed. In this
study we have discussed only the case of a single spike in-
put. Our method may be, however, applicable to arbitrary
inputs such as periodic spike trains and Poisson spikes, as
was made for HH neuron ensembles(without delays) [24].
Although results calculated by our method are in fairly good
agreement with those obtained by DC, the quantitative ana-
lytical theory is still lacking. In this study, we have assumed
regular couplingsswij =wd and uniform time delayssti j =td.
In real systems, however, couplings are neither regular nor

random, and time delays are nonuniform with a variety of
dendrite radius and length. It is interesting to include these
properties by extending our approach, which is in progress
and will be reported in a future paper[39].
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APPENDIX A: DERIVATION OF EQS. (8)–(15)

We express Eqs.(1) and (2) in a Taylor expansion of
dxis=dx1id anddyis=dx2id up to the third-order terms to get

ddxistd
dt

= f1stddxistd + f2fdxistd2 − g1,1st,tdg + f3stddxistd3

− cdyistd+ jistd + dI i
scdst − td, sA1d

ddyistd
dt

= bdxistd − ddyistd, sA2d

with

dI i
scdstd = wS g1std

N − 1 o
jsÞid

dxjstd +
g2std
N − 1 o

jsÞid
fdxjstd2 − g1,1g

+
g3std
N − 1 o

jsÞid
dxjstd3D , sA3d

where f,std=s1/, ! dFs,d(m1std) and g,std=s1/, ! dGs,d(m1std).
Averages of Eqs.(A1) and (A2) with Eqs.(3) and (4) yield
DEs for means ofdm1/dt and dm2/dt [Eq. (8)]. DEs for
variances and covariances may be obtained by using the
equations of motions ofdxi and dyi. For example, DE for
dg1,2st ,td /dt is given by

dg1,2st,td
dt

=
1

N
o

i
KSddxistd

dt
D dyistd + dxistdSddyistd

dt
DL ,

sA4d

which leads to Eq.(12). DEs for other variances and covari-
ances are similarly obtained.

APPENDIX B: DERIVATION OF EQS. (20)–(27)

In the process of calculations of Eqs.(8)–(15), we get new
correlation functions given by

S1st1,t2d =
1

N
o

i

kdxist1djist2dl, sB1d

S2st1,t2d =
1

N
o

i

kdyist1djist2dl, sB2d

where dxi =dx1i, dyi =dx2i, t1= t and t2= t−mt, or t1= t−mt
andt2= t. We will evaluate them by using DEs fordxistd and
dyistd, which are linearized from Eqs.(A1)–(A3):

FIG. 7. TheN dependence ofso andss for b=0.01,t=60, and
w=0.06. Thin and bold solid curves denote results of 10so andss,
respectively, in AMM, whereas squares and circles express those of
10so andss, respectively, in DS. Dotted lines are only for a guide
of the eye.
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ddxistd
dt

= astddxistd − cdyistd

+ S w

N − 1
D o

jsÞid
g1st − tddxjst − td + jistd,

sB3d

ddyistd
dt

= bdxistd − ddyistd, sB4d

where astd= f1std+3f3stdg1,1st ,td. Neglecting thet depen-
dence inastd, we get formal solutions of Eqs.(B3) and(B4)
given by

dxistd = SA + d

A − B
DEt

ds expst−sdA

3FS w

N − 1
D o

jsÞid
g1ss− tddxjss− td + jissdG

− SB + d

A − B
DEt

ds expst−sdB

3FS w

N − 1
D o

jsÞid
g1ss− tddxjss− td + jissdG ,

sB5d

dyistd = S b

A − B
DEt

ds expst−sdA

3FS w

N − 1
D o

jsÞid
g1ss− tddxjss− td + jissdG

− S b

A − B
DEt

ds expst−sdB

3FS w

N − 1
D o

jsÞid
g1ss− tddxjss− td + jissdG ,

sB6d

where A and B are roots of the equation given byz2−sa
−ddz−ad+bc=0. By using the method of steps in Ref.[6],
we obtain the step by step functions, from which we get

S1st,t − mtd = S1st − mt,td = Sb2

2
DDsmtd, sB7d

S2st,t − mtd = S2st − mt,td = 0, sB8d

whereDsxd=1 for x=0 and 0 otherwise. By using Eqs.(B7)
and(B8), we get Eqs.(20)–(27). The assumption of a neglect
of the t dependence inastd may be justified, to some extent,
from results calculated by our method which are in fairly
good agreement with those by DS as reported in Sec. III.

APPENDIX C: THE SMALL-DELAY APPROXIMATION

When the delayt is very small, we may adopt the small-
delay approximation(SDA) proposed in Ref.[3]. With this

approximation, we first transform the SDDEs to stochastic
non-delayed DEs, and then to deterministic DEs with the use
of DMA [23]. For a smallt, we may expandx1ist−td in Eq.
(1) as

x1ist − td . x1istd − t
dx1istd

dt
, sC1d

with which Eq. (1) becomes stochastic nondelayed DEs
given by

dx1istd
dt

+ S wt

N − 1
D o

jsÞid
G8„x1jstd…

dx1jstd
dt

=Fsx1id − cxi2 + S w

N − 1
D o

jsÞid
G„x1jstd„+ jistd + I sed.

sC2d

When we apply DMA to 2N-dimensional stochastic DEs
given by Eqs.(2) and(C2), we get equations of motions for
means, variances and covariances, given by

dm1std
dt

= f1 − wtu1gff0std + f2stdg1,1st,td − cm2std + wg0std

+ I sedstdg, sC3d

dm2std
dt

= bm1std − dm2std + e, sC4d

dg1,1st,td
dt

= 2fastdg1,1st,td − cg1,2st,td + wu1stdz1,1st,tdg + b2

− 2wtu1stdFastdz1,1st,td − cz1,2st,td + Swu1std
N − 1

D
Ã„Nr1,1st,td − z1,1st,td…G , sC5d

dg2,2st,td
dt

= 2fbg1,2st,td − dg2,2st,tdg, sC6d

FIG. 8. The time course ofm1std calculated in AMM (solid
curves) and in a small-delay approximation(SDA) (chain curves)
with b=0.01, w=0.1, andN=10, results fort=5,2, and 1being
successively shifted upwards by 2(see Appendix C).
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dg1,2st,td
dt

= bg1,1st,td + fastd − dgg1,2st,td − cg2,2st,td

+ wu1stdz1,2st,td− wtu1stdFastdz1,2st,td

− cz2,2st,td + Swu1std
N − 1

D„Nr1,2st,td − z1,2st,td…G ,

sC7d

dr1,1st,td
dt

= 2f1 − wtu1stdgFastdr1,1st,td − cr1,2st,td

+ wu1stdr1,1st,td +
b2

2N
G , sC8d

dr2,2st,td
dt

= 2fbr1,2st,td − dr2,2st,tdg, sC9d

dr1,2st,td
dt

= br1,1st,td + fastd − dgr1,2st,td − cr2,2st,td

+ wu1stdr1,2st,td− wtu1stdfastdr1,2st,td

− cr2,2st,td + wu1stdr1,2st,tdg, sC10d

where astd and zk,lst ,td are given by Eqs.(16) and (19),
respectively.

A numerical comparison between AMM and SDA is made
in Fig. 8, where solid and chain curves denote results of
AMM and SDA, respectively. Fort=0 both methods lead to
the identical result. For small delays oft=1 and 2, results of
SDA are in fairly good agreement with those of AMM. As
the delay is increased tot.5, however, the discrepancy be-
tween the two methods becomes significant.
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